Multifunctional Silica Nanoparticles Modified via Silylated-Decaborate Precursors
نویسندگان
چکیده
منابع مشابه
Surface-modified multifunctional MIP nanoparticles.
The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of hig...
متن کاملMultifunctional clickable and protein-repellent magnetic silica nanoparticles.
Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule a...
متن کاملMultifunctional silica nanoparticles for optical and magnetic resonance imaging.
The surface of spherical, nonporous silica nanoparticles (SiO2-NPs) was modified with gadolinium (Gd) complexes, fluorophores, and cell-penetrating peptides to achieve multifunctionality on a single particle. The Gd surface concentrations were 9-16 μmol/g resulting in nanomaterials with high local longitudinal and transversal relaxivities (~1×10(5) and ~5×10(5) /mm/s/NP, respectively). Rapid ce...
متن کاملMultifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites
Novel water-dispersible and biocompatible chitosan-functionalized graphene (CG) has been prepared by a one-step ball milling of carboxylic chitosan and graphite. Presence of nitrogen (from chitosan) at the surface of graphene enables the CG to be an outstanding catalyst for the electrochemical biosensors. The resulting CG shows lower ID/IG ratio in the Raman spectrum than other nitrogen-contain...
متن کاملEngineering cytochrome-modified silica nanoparticles to induce programmed cell death.
A low native membrane permeability and ineffective access to the cellular cytosol, together with aggressive proteolytic degradation, often severely hampers the practical application of any therapeutic protein or antibody. Through engineering the charging profile of mesoporous silica nanoparticles, cellular uptake and subsequent subcellular distribution can be controlled. We show herein that pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nanomaterials
سال: 2015
ISSN: 1687-4110,1687-4129
DOI: 10.1155/2015/608432